if tan x = n tan y and sin x = m sin y prove that cos²x = m²-1/n²-1
Answers
Answered by
0
Answer:
=cos^2 x
Step-by-step explanation:
tan x / tan y = n ⇒ n^2 = tan^2 x / tan^2 y
n^2 - 1 = tan^2 x - tan^2 y / tan^2y
similarly m^2 - 1 = sin^2 x - sin^2 y / sin^2y
m^2 - 1 / n^2 - 1 = ( sin^2 x - sin^2 y )( tan^2y) / ( tan^2 x - tan^2 y )sin^2y
= ( sin^2 x - sin^2 y ) ( 1 / cos^2 y ) / sec^2x - sec^2 y
= ( sin^2 x - sin^2 y ) ( 1 / cos^2 y ) / cos ^2y - cos^2x / cos^2xcos^2y
= cos^2 x
Similar questions