If tan x = sin 45° cos 45 ° + sin 30°, then find the value of x
Answers
Answered by
18
◆Heya◆
Here's your answer...
Solution :-
tan x = sin 45° cos 45 ° + sin 30°
Substitute the values,
Sin 30 = 1/2
Sin45 = 1/√2
Cos45 = 1/√2
tan x = {(1/√2) × (1/√2)}+ 1/2
Tan x = 1/2 + 1/2
Tan x = 2/2
Tan x = 1
Tan x = tan 45
(Tan gets cancelled)
x = 45
◆The value of x is 45
________________________
Hope this helps you....
Answered by
7
solution
if tanx=sin45°cos45° + sin30°
⇒tanx= 1/√2*1/√2 + 1/2
from specials angles
⇒tanx=1/√4 + 1/2
⇒tanx=1/2 + 1/2
tanx=(1+1)/2
⇒tanx=2/2
tanx=1
x=arctan(1)
x=45°
Similar questions