Math, asked by shuvoz, 2 months ago

If tan x, tan y, tan z are in G.P., show that cos 2y = cos(x+2)/cos(x -y)​

Answers

Answered by PharohX
11

 \large{ \green { \rm GIVEN :-}}

 \sf \tan(x)  \:  \:  \:  \tan(y)  \: and \:  \tan(z)  \: are \: in \: G.P

 \large{ \green { \rm \: TO \:  \:  SHOW :- }}

 \sf \cos(2y)  =  \frac{ \cos( x + z)  }{ \cos( x - z) }  \\

 \large{ \green { \rm SOLUTION:-}}

 \sf \: If \:  \:  a,b,c  \:  \: are  \:  \: in \:  \:  G.P \:  \:  then :  -

 \sf \: relation \: is \\   \boxed{ \large\sf {b}^{2}  = ac}

 \sf \: Here  \: \: a =  \tan(x)  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf b =  \tan(y)  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: c =  \tan(z)

 \sf \: Putting \: \:   in \:  \:  the  \:  \: relation  :  -

 \sf \: we \: get -

 \:  \:  \:  \:  \:  \:  \:  \:  \sf \tan^{2} (y)  =  \tan(x) . \tan(y)

 \sf \implies  \frac{ \sin^{2} (y) }{ \cos ^{2} (y) }  =  \frac{ \sin(x) }{ \cos(x) } . \frac{ \sin(z) }{ \cos(z) }  \\

 \sf \: Appling \:  \:  Componando  \:  \: and  \:  \: Dividendo

 \sf \implies \:  \frac{ \sin^{2} (y) +  \cos^{2}(y)  }{ \sin^{2}(y) -  \cos^{2}(y)  }   =   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf \:  \frac{ \sin(x). \sin(z)   +  \cos(x) .  \cos(z)  }{ \sin(x). \sin(z)    -  \cos(x) .  \cos(z)}

 \sf \: Rearrange \:  \:  this

 \sf \implies \:  \frac{ \sin^{2} (y) +  \cos^{2}(y)  }{ -  (\cos^{2}  (y) - \sin^{2}(y)  ) }   =   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf \:  \frac{ \cos(x) .  \cos(z) + \sin(x). \sin(z)     }{ -  (\cos(x) .  \cos(z)  - \sin(x). \sin(z)  ) }

 \sf \: Removing \:  or  \: cancelling \:  minus \:  sign \:

 \sf \implies \:  \frac{ \sin^{2} (y) +  \cos^{2}(y)  }{  (\cos^{2}  (y) - \sin^{2}(y)  ) }   =   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf \:  \frac{ \cos(x) .  \cos(z) + \sin(x). \sin(z)     }{ (\cos(x) .  \cos(z)  - \sin(x). \sin(z)  ) }.

 \sf \:  \bold{ Use \:  \ Formula  \rightarrow}

 \sf \: 1.\sin^{2} (y) +  \cos^{2}(y) = 1

 2.\sf \:  \cos(2y)  = \cos^{2}(y) -  \sin^{2} (y)

 \sf \: 3. \cos(x - z)  =   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf\cos(x) .  \cos(z) + \sin(x). \sin(z)

 4.\sf \:  \cos(x  +  z)  =   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf\cos(x) .  \cos(z)  -  \sin(x). \sin(z)

 \sf \: Putting \:  \:  all  \:  \: formula

 \sf \: We  \:  \: get  -

 \implies \sf \:  \frac{1}{ \cos(2y) }  =  \frac{ \cos(x - z) }{ \cos(x + z) }  \\

 \sf \: Now  \: reciprocal  \: this  \: we  \: get  \: the  \: ans

 \boxed{ \sf \:  \cos(2y)  =  \frac{ \cos(x  + z) }{ \cos(x + z) }  }

 \large{ \green { \bold{ \sf \: Proved : -  }}}

Answered by rejeetsaha
0

Answer:

understand it by seeing

Attachments:
Similar questions