if tan(x+y)=a+b and tan(x-y)=a-b then prove that atan(x)-btan(y)= a^2-b^2
Answers
Answer:
given tan[x+y] = a+b and tan[x-y] = a-b
⇒tanx+tany =a+b and tanx-tany=a-b
Step-by-step explanation:
now add the both ,we get
tanx + tany =a+b
tanx - tany =a-b
⇒tanx=a²
and do like this
★Given:-
- tan(x+y)=a+b
- tan(x-y)=a-b
★To prove:-
- atan(x)-btan(y)= a²-b²
★Proof:-
→tan(x+y)=a+b---(1)
→tan(x-y)=a-b----(2)
Multiplying equation (1)&(2),
⇒tan (x+y) tan (x-y) = (a+b)(a-b)
Using the formula,
★(a+b)(a-b)=a²-b²
⇒(tan²x-tan²y)/(1-tan²x tan²y)=a²-b²----(3)
⇒tan(x+y)+tan(x-y)=a+b+a-b
=2a------(4)
⇒(tanx+tany)/(1-tan xtan y) + (tanx-tany)/(1+tan xtan y)=2a
⇒2(tan x+tan xtan²y)/(1-tan²xtan²y)=2a
Multiplying both sides by tanx,
⇒atanx=(tan²x+tan²xtan²y)/(1-tan²xtan²y)-----(5)
⇒tan(x+y)-tan(x-y)=a+b-a+b
=2b
Now,
⇒btan y=(tan²y+tan²xtan²y)/(1-tan²xtan²y)----(4)
Using equation (3),
⇒atanx - btany=(tan²x-tan²y)/(1-tan²xtan²y)=a²-b²
Hence proved !
_________________