Math, asked by abhi7618, 11 months ago

if tan(x-y) .tan(x+y)=1 then find the value of tan(4x/3) ​

Answers

Answered by krushiteja27
0

Answer:

okokokoookokok9oo

Step-by-step explanation:

owowooowoowowowow

Answered by Dhruv4886
0

The answer is \sqrt{3}

Given: tan(x-y). tan(x+y) = 1

To find: The value of tan (4x/3)  

Solution:

From given data

⇒ tan(x-y). tan(x+y) = 1

⇒  tan(x-y) = \frac{1}{tan(x+y)}    

⇒  tan(x-y) = cot (x+y)}    [  \frac{1}{tanA} = cot A ]

⇒  tan(x-y) =tan (90 - (x+y))}   [ tan (90 - A) = cot A ]

⇒  x - y = 90 - (x+y)

⇒  x - y = 90 - x -y

⇒  2x = 90  

⇒   x = 45°

tan \frac{4x}{3}  =  tan \frac{4(45)}{3}

= tan 4(15)  = tan 60°  = \sqrt{3}  

Therefore, tan \frac{4x}{3} = \sqrt{3}  

#SPJ2

Similar questions