Math, asked by suhani7246, 8 months ago

. If tan y = 3 tan x, prove that tan (x + y) =
2 sin 2 y
1 + 2 cos 2 y​

Answers

Answered by Anonymous
2

correct question :

If tan y = 3 tan x, prove that tan (x + y) =

2 sin 2 y/1 + 2 cos 2 y

Given :

tan y = 3

To prove :

(x + y) = 2 sin 2 y/1 + 2 cos 2 y

Solution :

tan x = tan y/3

tan x + y = tan x + tan y/1 - tan x tan y

➸ (tan y/3) + tan y/1 - (tan² y/3)

➸ 4 tan y/3 - tan² y

➸ (4sin y/cos y)/(3 - sin² y/cos y)

➸ 4sin y cos y/3cos² y - sin² y

➸ 2 x 2sin y cos y/2cos² y + cos² y-sin²y

➸ 2sin 2y/1 + cos 2y + cos 2y

2sin 2y/1 + 2cos 2y ( hence proved )

Answered by gpvvsainadh
3

Step-by-step explanation:

 \tan( x)  =   \frac{1}{3} \tan(y)

 \tan(x + y)  =  \frac{ \tan(x) +  \tan(y)  }{1 -  \tan(x) \tan(y)  } \\  =  \frac{ \frac{1}{3}  \tan(y) + \tan(y)   }{1 -  \frac{1}{3} \tan(y) \tan(y)   }  \\  \frac{ \frac{4}{3} \tan(y)  }{ \frac{1}{ 3}(3 -  { \tan }^{2} y) }  \\  \frac{4 \frac{ \sin(y) }{ \cos(y) } }{3 -  \frac{ { \sin }^{2}y }{\cos^{2}y  } }  \\   \frac{4 \frac{ \sin(y) }{ \cos(y) } }{  \frac{ 3 \cos^{2}y  -  sin^{2} y}{ \cos(^{2} ) } }  \\  \frac{4 sin(y )cos(y )}{3 \cos^{2} y - (1  - \cos^{2} y) }  \\  \frac{2 \sin(2y) }{4 \cos^{2}y  - 1 } \\  \frac{2 \sin(2y) }{2(2 \cos^{2}y - 1) + 2  - 1 }  \\ \  \frac{2 \sin(2y) }{2cos(2y )+ 1 }

Similar questions