. If tan y = 3 tan x, prove that tan (x + y) =
2 sin 2 y
1 + 2 cos 2 y
Answers
Answered by
2
correct question :
If tan y = 3 tan x, prove that tan (x + y) =
2 sin 2 y/1 + 2 cos 2 y
Given :
tan y = 3
To prove :
(x + y) = 2 sin 2 y/1 + 2 cos 2 y
Solution :
tan x = tan y/3
tan x + y = tan x + tan y/1 - tan x tan y
➸ (tan y/3) + tan y/1 - (tan² y/3)
➸ 4 tan y/3 - tan² y
➸ (4sin y/cos y)/(3 - sin² y/cos y)
➸ 4sin y cos y/3cos² y - sin² y
➸ 2 x 2sin y cos y/2cos² y + cos² y-sin²y
➸ 2sin 2y/1 + cos 2y + cos 2y
∴ 2sin 2y/1 + 2cos 2y ( hence proved )
Answered by
3
Step-by-step explanation:
Similar questions