Math, asked by balajibalaji863863, 1 month ago

If tan0 = (1 - e), show that sec 0 + tano.cosec 0 = (2-e?)32
III.​

Attachments:

Answers

Answered by mathdude500
1

\begin{gathered}\begin{gathered}\bf\: Given-\begin{cases} &\sf{ {tan}^{2}\theta = 1 -  {e}^{2}  } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\:show - \begin{cases} &\sf{sec\theta +  {tan}^{3}\theta \: cosec\theta={\bigg( 2 -  {e}^{2} \bigg) }^{\dfrac{3}{2} }}\end{cases}\end{gathered}\end{gathered}

Identities Used :-

\boxed{\red{\sf\: {sin}^{2}x +  {cos}^{2}x = 1}}

\boxed{\red{\sf\:secx = \dfrac{1}{cosx}}}

\boxed{\red{\sf\:cosecx = \dfrac{1}{sinx}}}

\boxed{\red{\sf\:cotx = \dfrac{cosx}{sinx}}}

\boxed{\red{\sf\:tanx = \dfrac{sinx}{cosx}}}

Let's solve the problem now!!

Given that,

\rm :\longmapsto\: {tan}^{2}\theta = 1 -  {e}^{2}   -  -  - (1)

Now,

Consider,

\rm :\longmapsto\:sec\theta +  {tan}^{3}\theta \: cosec\theta

 \:  \sf \:  \:  =  \:  \: \dfrac{1}{cos\theta}  + \dfrac{ {sin}^{3}\theta }{ {cos}^{3} \theta}  \times \dfrac{1}{sin\theta}

 \:  \sf \:  \:  =  \:  \: \dfrac{1}{cos\theta}  + \dfrac{ {sin}^{2}\theta }{ {cos}^{3} \theta}

 \:  \sf \:  \:  =  \:  \: \dfrac{  {cos}^{2}\theta +  {sin}^{2}\theta }{ {cos}^{3} \theta}

 \:  \sf \:  \:  =  \:  \: \dfrac{ 1}{ {cos}^{3} \theta}

 \:  \sf \:  \:  =  \:  \:  {sec}^{3}\theta

 \:  \sf \:  \:  =  \:  \:  {\bigg(  {sec}^{2}\theta \bigg) }^{\dfrac{3}{2} }

 \:  \sf \:  \:  =  \:  \:  {\bigg(1 + {tan}^{2}\theta \bigg) }^{\dfrac{3}{2} }

 \:  \sf \:  \:  =  \:  \:  {\bigg(1 +1 -  {e}^{2}\bigg) }^{\dfrac{3}{2} }

 \:  \sf \:  \:  =  \:  \:  {\bigg(2 -  {e}^{2}\bigg) }^{\dfrac{3}{2} }

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions