Math, asked by vaishaliyp85, 3 months ago

if tan0+cot0=4 than find the value of tan4 0+cot 4 0

please slove this ​

Answers

Answered by AestheticSky
8

\huge{\underline{\underline{\bf Identities\:used}}}

\underline\pink{\boxed{\bf (a+b)² = a²+b²+2ab}}

\implies \tan( \theta)  +  \cot( \theta)  = 4 \\  \\ \implies( \tan^{2} ( \theta) +  \cot^{2} ( \theta)  + 2 \tan( \theta) \cot( \theta)   )  = 16 \\  \\ \implies\tan^{2} ( \theta) +  \cot^{2} ( \theta) = 14 \:  -  -  - (1) \\  \\ \implies\tan^{4} ( \theta) +  \cot^{4} ( \theta) \\  \\  \implies (\tan^{2} ( \theta))^{2}  +  (\cot^{2} ( \theta))^{2}  \\  \\\implies (\tan^{2} ( \theta) +  \cot^{2} ( \theta)) - 2\tan^{2} ( \theta) \cot^{2} ( \theta) \\  \\ \implies(14) ^{2}  - 2 = 194

Similar questions