Math, asked by lishu675, 9 months ago


If tan2 θ = 1 − k2, show that sec θ + tan3 θ cosec θ = (2−k2)3/2. Also, find the values of k for which this result holds.

Answers

Answered by rajsingh24
52

{\green{\boxed{\boxed{\underline{\purple{\red{\rm{QUESTION :}}}}}}}}

If tan² θ = 1 − k², show that sec θ + tan³θ cosec θ = (2−k²)3/2. Also, find the values of k for which this result holds.

{\green{\boxed{\boxed{\underline{\purple{\red{\rm{SOLUTION :}}}}}}}}

\leadsto \rm \: sec \theta \:  + tan {}^{3} \theta \:  \: cosec \theta   \\  \\ \leadsto \rm \: ( \frac{1}{cosec \theta}) +  (\frac{sin \theta}{cos \theta} ) {}^{3}  \:  \: ( \frac{1}{sin \theta})  \\ \\ \leadsto \rm \:  (\frac{1}{cos \theta} ) + ( \frac{  sin {}^{3}  \theta }{cos {}^{3}  \theta} ) \:  \: ( \frac{1}{sin \theta} )  \\  \\   \leadsto \rm  \:  ( \frac{1}{cos \theta} ) + ( \frac{sin {}^{2} \theta}{cos {}^{3} \theta} ) \:  \\  \\  \: \leadsto \rm \: ( \frac{cos {}^{2} \theta + sin {}^{2}\theta  }{cos {}^{3}\theta } ) \\  \\ \leadsto \rm \:  \frac{1}{cos {}^{3}  \theta}  \\  \\ \leadsto \rm  \:    sec {}^{3} \theta \\  \\ \leadsto \rm  \: \red{ (sec {}^{2} \theta) \: sec \theta \: -------(1) }\:  \\  \\ \leadsto \green{ \rm{ \underline{Given That :}}} \\  \\  \: \leadsto  \rm \: tan {}^{2} \theta \:   =  1 - k {}^{2} \:  \:  \\  \\  \leadsto \green{ \rm{ \underline{  add \: 1 \: on \: both \: sides : }}} \:  \\  \\ \leadsto  \rm \: 1 + tan {}^{2}  \theta = 1 + 1 - k {}^{2}  \\  \\  \leadsto  \green{ \rm{ \underline{ by \: applying \: the \: above \: values \: in \:  }}} \:  \:  \\ \green{ \rm{ \underline{  the \: first \: equation \red{ \: we \: get :  }}}}    \\ \\ \leadsto  \rm\: (2 - k {}^{2}) \:  \:  \sqrt{(2 - k {}^{2} )}   \\  \\ \leadsto  \rm\:  \: (2 - k {}^{2} ) \frac{3}{2}  \\  \\ \leadsto  \rm\:  \: { \boxed{ \boxed{ \underline { \rm{ \pink{The \:  value \:  of \:  K  \: is \:  \:  [ -1 , 1 ] \: }}}}}}

Answered by niraj91027
0

k = 1 (2((#($8383829299292(3($($($($

Similar questions