Math, asked by keshavdevt, 1 year ago

If tan² 45°-cos² 30°=x. sin 45° cos 45° ,then the value of x is

Answers

Answered by SRK1729
22

tan45 = 1

cos30 = root3/2

sin45= 1/root2=cos45

(1)^2-(3/4)=x. (1/root2)(1/root2)

1-3/4 =x/2

1/4=x/2

or x = 1/2

therefore x=cos60=sin30

Answered by pinquancaro
19

The value of x is x=\frac{1}{2}.

Step-by-step explanation:

Given : Equation \tan^2 45^\circ-\cos^2 30^\circ=x\cdot \sin 45^\circ\cos 45^\circ

To find : The value of x ?

Solution :

Using trigonometric values,

\sin 45^\circ=\frac{1}{\sqrt{2}}

\cos 30^\circ=\frac{\sqrt3}{2}

\cos 45^\circ=\frac{1}{\sqrt{2}}

\tan 45^\circ=1

Substituting in equation,

(1)^2-(\frac{\sqrt3}{2})^2=x\cdot (\frac{1}{\sqrt{2}})(\frac{1}{\sqrt{2}})

1-\frac{3}{4}=x\cdot \frac{1}{2}

\frac{4-3}{4}=x\cdot \frac{1}{2}

\frac{1}{4}=x\cdot \frac{1}{2}

x=\frac{2}{4}

x=\frac{1}{2}

Therefore, the value of x is x=\frac{1}{2}.

#Learn more

Prove tan(45+a)+tan(45-a)/tan(45+a)-tan(45-a)=cosec2a

https://brainly.in/question/13201388

Similar questions