CBSE BOARD XII, asked by kambleakash1814, 10 months ago

If tan² 45° - cos² 60° - x sin 45° . tan 60° = 0 then x = *

Answers

Answered by aman109811
0

Answer:

hehdcdhduevjaosnvehxjznxzxnznzzzzzzxxsszzzzzzxxcxxddkebebsjkxjr

Explanation:

shhshdndjcbcgydidsbzhskskzjbzbhsjskazbddejksksndhejkskzbdbdkelsmbhkepsshhdheowmsbxbejowsbhriwmsbfk

Answered by brokendreams
0

Step by step explanation:

Given : An expression tan^{2} 45\°-cos^{2} 60\°-x*sin45\°*tan60\°=0

To find : The value of x

Trigonometric values used : We use trigonometric values to solve the expression,

  1. tan 45\°=1
  2. cos60\°=\frac{1}{2}
  3. sin45\°=\frac{1}{\sqrt{2} }
  4. tan60\°=\sqrt{3}
  • Calculation for x :

We have,

⇒  tan^{2} 45\°-cos^{2} 60\°-x*sin45\°*tan60\°=0

by putting all the required values of trigonometric functions in given expression we can find the value of x,

⇒  (1)^{2} -(\frac{1}{2} )^{2} -x*\frac{1}{\sqrt{2} } *\sqrt{3} =0

⇒  1-\frac{1}{4} -x*\frac{\sqrt{3} }{\sqrt{2} }=0

⇒  \frac{4-1}{4} =\frac{\sqrt{3} }{\sqrt{2} } *x

⇒  \frac{3}{4} =\frac{\sqrt{3} }{\sqrt{2} } *x

⇒  x=\frac{3}{4} *\frac{\sqrt{2} }{\sqrt{3} }

⇒  x=\frac{\sqrt{3} }{2\sqrt{2} }

we get the value of x is x=\frac{\sqrt{3} }{2\sqrt{2} }.

Similar questions