If tan²Ф+cot²a=X what is the value of
1/ (sinФ cosФ)
Answers
Answered by
1
tan²Ф+cot²Ф = X
sin²Ф/cos²Ф + cos²Ф/sin²Ф = X [Since,tanФ=sinФ/cosФ & cotФ=cosФ/sinФ]
(sin²Ф.cos²Ф + cos²Ф.sin²Ф) / cos²Ф.sin²Ф = X [By taking LCM]
2 sin²Ф.cos²Ф / sin²Ф.cosФ = X [By division]
sin²Ф.cos²Ф = X
(sinФ.cosФ)² = X
sinФ cosФ = √X
1/(sinФ cosФ) = 1/√X
sin²Ф/cos²Ф + cos²Ф/sin²Ф = X [Since,tanФ=sinФ/cosФ & cotФ=cosФ/sinФ]
(sin²Ф.cos²Ф + cos²Ф.sin²Ф) / cos²Ф.sin²Ф = X [By taking LCM]
2 sin²Ф.cos²Ф / sin²Ф.cosФ = X [By division]
sin²Ф.cos²Ф = X
(sinФ.cosФ)² = X
sinФ cosФ = √X
1/(sinФ cosФ) = 1/√X
andymukhrj:
didnt get the addition step!!!!!!!!!!!!!!! I thin i wl be Sin^4 a+ Cos^4 a/(Sin^2 a . Cos^2 a)
Similar questions