If tan20=p, then prove that tan 6100+tan 7000 tan 5600−tan 4700 = 1−p 2 1+p
Answers
Answer:
ask from goole is better
ka nothing
Answer:
tan610° = tan(720° - 110°) = -tan110°
= -tan(90° + 20°) = cot20° = 1/tan20° = 1/p
tan700° = tan(720° - 20°) = -tan20° = -p
tan560° = tan(360° + 200°) = tan200°
= tan(180° + 20°) = tan20° = p
tan470° = tan(360° + 110°) = tan110°
= tan(90° + 20°) = -cot20° = -1/tan20° =- 1/p
now, LHS = (tan610° + tan700°}/(tan560° - tan470°)
= (1/p - p)/(p + 1/p)
= (1 - p²)/(p² + 1)
= (1 - p²)/(1 + p²) = RHS
Step-by-step explanation:
tan610° = tan(720° - 110°) = -tan110°
= -tan(90° + 20°) = cot20° = 1/tan20° = 1/p
tan700° = tan(720° - 20°) = -tan20° = -p
tan560° = tan(360° + 200°) = tan200°
= tan(180° + 20°) = tan20° = p
tan470° = tan(360° + 110°) = tan110°
= tan(90° + 20°) = -cot20° = -1/tan20° =- 1/p
now, LHS = (tan610° + tan700°}/(tan560° - tan470°)
= (1/p - p)/(p + 1/p)
= (1 - p²)/(p² + 1)
= (1 - p²)/(1 + p²) = RHS