Math, asked by girijaandkittu, 1 year ago

if tan22°+tan38°-√3=ktan22°tan38° then k=

Answers

Answered by devarudra97
9

Answer:

the value of the k in above equation is -√3

Answered by sushiladevi4418
13

Answer:

The value of k = \sqrt{3}

Step-by-step explanation:

As per the question,

We have to find the value of k in the equation tan22\°+tan38\° - \sqrt{3} = k(tan22\°\times tan38\°)

As we know that,from the trigonometric identity,

tan(A+B) = \frac{tanA+tanB}{1-tanA\times tanB}

So,

tan (22\°+38\°) =  tan60\°

tan60\° =\frac{tan22\°+tan38\°}{1-tan22\°\times tan38\°}

\sqrt{3} = \frac{tan22\°+tan38\°}{1-tan22\°\times tan38\°}

\sqrt{3} \times (1-tan22\°\times tan38\°) = tan22\°+tan38\°

\sqrt{3} - \sqrt{3} (tan22\°\times tan38\°) = tan22\°+tan38\°

tan22\°+tan38\° - \sqrt{3} = \sqrt{3} (tan22\°\times tan38\°)

Hence,the value of k = \sqrt{3}.

Similar questions