Math, asked by asha27das, 5 months ago

if tan²45° -cos² 30° = x sin 45° cos45° then x =​

Answers

Answered by akcpm4341e
1

Answer:

1-3/4=x/√2.1/√2

1/4=x/2

therefore x=1/2

Answered by Mɪʀᴀᴄʟᴇʀʙ
24

 \sf{{Solution:-}}

 \sf{{tan^{2}45^{\circ}-cos^{2}=x sin45^{\circ}cos45^{\circ}}}

 \sf{{We \ have \ to \ find \ the \ value \ of \ x:-}}

 \sf{{(1)^{2}-}}(\sf\dfrac{\sqrt {3}}{2})^{2} \sf{{=x}}\sf\dfrac{1}{\sqrt{2}}(\sf\dfrac{1}{\sqrt {2}})

 \implies \sf{{1-}}\sf\dfrac{3}{4} \sf{{=x}}(\sf\dfrac{1}{2})

\implies \sf\dfrac{4-3}{4} \sf{{=x}}(\sf\dfrac{1}{2})

\implies \sf\dfrac{1}{4} \sf{{=x}}(\sf\dfrac{1}{2})

 \implies \sf{{x=}}\sf\dfrac{1}{4}\div\dfrac{1}{2}

 \implies \sf{{x=}}\sf\dfrac{1}{4}\times\dfrac{2}{1}

 \implies \sf{{x=}}\sf\dfrac{1}{2}

 \sf{{Required \ Answer:-}}

 \sf{{Value \ of \ x = }}\sf\dfrac{1}{2}

______________________________________

 \sf{{Trigonometry \ Table:-}}

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 65^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

______________________________________

Similar questions