If tan²a-5tana+1=0 find the value of tan²a+ cot ²a
Answers
Given: It is given that tan²A - 5tanA + 1 = 0
To find: The value of tan²A + cot²A
Solution:
It is given that tan²A - 5tanA +1 = 0 , then
tan²A - 5tanA = -1
tanA ( tanA - 5 ) = -1
tanA - 5 = - 1/tanA
tanA - 5 = - cotA
tanA + cotA = 5
Squaring on both the sides, we have
( tanA + cotA )² = 25
tan²A + cot²A + 2tanA cotA = 25
Now, because tanAcotA=1 , therefore the equation becomes,
tan²A + cot²A + 2 = 25
tan²A + cot²A = 23
thus the value of tan²A + cot²A is 23
Answer: 23
Step-by-step explanation:
Given,
tan²A - 5tanA + 1 = 0
tan²A - 5tanA = -1
tanA(tanA - 5) = -1
tanA - 5 = -1/tanA
We know that 1/tanA = cotA
So,
tanA - 5 = -cotA
tanA + cotA = 5
Now, Making square of both sides,
(tanA +cotA)² = 5²
Expanding RHS by (a + b)² = a² + b² +2ab
tan²A + cot²A + 2tanA.cotA = 25
tan²A + cot²A + 2tanA ×(1/tanA) = 25
tan²A + cot²A + 2 = 25
tan²A + cot²A = 25 - 2
tan²A + cot²A = 23