Math, asked by hasini4697, 17 days ago

If tan2A=cot(A−18), where 2A is an acute angle, then find the value of A​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm \: 2A \: is \: an \: acute \: angle \\

and

\rm \: tan2A = cot(A - 18\degree ) \\

We know,

\boxed{ \rm{ \:tanx = cot(90\degree  - x) \: }} \\

So, using this result, the above expression can be rewritten as

\rm \: cot(90\degree  - 2A) = cot(A - 18\degree ) \\

On comparing, we get

\rm\implies \:90\degree  - 2A= A - 18\degree  \\

\rm \: 2A + A = 90\degree  + 18\degree  \\

\rm \: 3A  = 108\degree  \\

\rm\implies \:A = 36\degree  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 }\\ \\  \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by AnanyaBaalveer
19

Answer:

\large\underline{\sf{A=36°}}

Step-by-step explanation:

\large\underline{\sf{Given  \: that}}

\large\underline{\sf{2A \: is \: an \: acute \: angle}}

\large\underline{\sf{and}}

\large\underline{\sf{ \tan(2A)  = \cot( A  - 18 \degree)}}

\large\underline{\sf{We  \: know}}

\large\boxed{\sf{ \tan x =  \cot(90 \degree  - x)  }}

So,using this , the above expression can be written as

\large\underline{\sf{ \cot(90 \degree - 2A) =  \cot(A-18°)  }}

\large\underline{\sf{ ➡\: On \: comparing \:  we \:  get}}

\large\underline{\sf{90°-2A =A - 18 \degree }}

\large\underline{\sf{ \implies 3A = 108 \degree}}

\large\underline{\sf{A = 36 \degree}}

Similar questions