Math, asked by Karthick7966, 11 months ago

If tan2A= cot (A – 18°) , where 2A is an acute angle , find the value of A

Answers

Answered by RamjeetPrajapati
1

Step-by-step explanation:

tan2A=cot(A-18°)

cot(90°-2A)=cot(A-18°)

90°-2A=A-18°

3A=108

A=108/3

A=36

Answered by XEVILX
8

Hey Pretty Stranger!

 \bold{ \red {Here  \: you \:  go}}

Given : tan2A= cot(A-18°)

To Find : The value of A

We know that,

 \rightarrow \tt \tan \theta =  \cot(90 -  \theta) \: and  \\   \rightarrow\tt\:  \cot \theta =  \tan(90 -  \theta)

 \longrightarrow \tt \:   \cot(90 - 2A)  =  \cot( A- 18)

 \longrightarrow \tt \: 90 - 2A = A - 18

 \longrightarrow \tt \: 90  + 18 =  2A  + A

 \longrightarrow \tt \: 108=  3A

 \longrightarrow \tt \:  A  =   \cancel\dfrac{108}{3}

 \longrightarrow \tt \:  A  =   \cancel\dfrac{108}{3}

 \longrightarrow \tt \:  A  =     \large\boxed{ \red{ \sf \: 36^{o} }}

Hence,Value of A = 36°

Similar questions