Math, asked by yuvikajauhari65, 10 months ago

If tan2A / (secA -­ 1)2 = x, then the value of x is

A) (1+cosec

Answers

Answered by yuvathilagan
1

Answer:

Thanks for your question

Answered by MysticalGiggles
1

\\\\\\

Here is your answer dear⛄

\\\\

 =  >  \frac{ {Tan}^{2} A}{( {Sec \: A \:  -  \: 1})^{2} }

 =  >  \frac{ {Sec \: A}^{2} }{(Sec \: A \:  -  \: 1) {}^{2} }

 =  >  \frac{(Sec \: A \:  -  \: 1) \: (Sec \: A \:  +  \: 1)}{( {Sec \: A \:  -   \: 1})^{2}  }

❥ Cancel (Sec A - 1) and ²

 =  >  \frac{ \frac{1}{Cos \: A}  \:  +  \: 1}{ \frac{1}{Cos \: A}  \:  - 1}

 =  >  \frac{1 \:  +  \:  \frac{Cos \: A}{Cos \: A} }{1  \: - \:  \frac{Cos \: A}{Cos \: A}  }

❥ Cancel the denominators (Cos A)

 =  =  >  \:  \frac{1 \:  +  \: Cos \: A}{1 \:  -  \: Cos \: A}

 x \: = \: \frac{ 1 \: + \: Cos \: A}{ 1 \: - \: Cos \: A}

\\\\

\huge\colorbox{cyan}{MysticalGiggles}

\\\\

Similar questions