Math, asked by anushka010804, 6 months ago

If tan²ø=1+2tan²alpha
Prove that,
Sin²ø=1/2(1+sin²alpha)​

Answers

Answered by Anonymous
3

Given :

\mapsto\sf \tan ^2\phi=1+2\tan^{2} \alpha

_____________________________________

Proof :

\:\:\:\:\:\:\:\:\:\sf\tan^2=1+2\tan^2\alpha

\sf\implies \sec^2\phi-1=1+2\tan^2\alpha

\sf\implies\cos^2\phi=\frac{1}{2(1+\tan^2\alpha)}\\

\sf\implies 1-\sin^2\phi=\frac{1}{2(1+\tan^2\alpha)}\\

\sf\implies\sin^2\phi=\frac{1}{2}\{2-\frac{1}{(\sec^2\alpha)}\}\\

\sf\implies\sin^2\phi=\frac{1}{2}\{1+1-\cos^2\alpha\}

\sf\:\:\:\:\:\:\therefore{\underline{\boxed{\sf{\sin^2\phi=\frac{1}{2}\{1+\sin^2\alpha\}}}}

_______________________________________

Formula Required :

\sf 1) \sin^2\theta+\cos^2\theta=1

\sf 2) \sec^2\theta-\tan^2\theta=1

_________________________

HOPE THIS IS HELPFUL...

Similar questions