If tan²x = 1-a² , prove that secx + tan³x cosecx = (2-a²)^3/2.
Answers
Answered by
5
Answer:
hiiii
your answer is here !
Step-by-step explanation:
tan²θ=1-a²
LHS
=secθ+tan³θcosecθ
=√(1+tan²θ)+tan²θ×tanθ×√(1+cot²θ)
[∵, sec²θ-tan²θ=1 and cosec²θ-cot²θ=1]
=√1+(1-a²)+(1-a²)×√(1-a²)×√{1+(1/tan²θ)}
=√(2-a²)+(1-a²)×√(1-a²)×√{1+1/(1-a²)}
=√(2-a²)+(1-a²)×√(1-a²)×√{(1-a²+1)/(1-a²)}
=√(2-a²)+(1-a²)×√(2-a²)
=√(2-a²)×(1+1-a²)
=√(2-a²)×(2-a²)
=(2-a²)¹/²⁺¹
=(2-a²)³/²
=RHS (Proved)
follow me !
Answered by
3
รσℓµƭเσɳ
==>
We have ,
secx + tan ³ X cosecx
taking sec x common.
sec x ( 1 + tan³x cosec X/ sec x)
We know that sec²x = 1+tan²x
√1 + tan²x ( 1 + tan³x cotx )
√1 + tan²x ( 1 + tan³x 1/tan x)
√1+tan ²x ( 1 + tan² x)
(1+tan²x)½( 1+tan²x)
(1+tan²x)¹+½
(1+tan²x )^³/²
tan ²x = 1-a²,so
(1+1-a²) ³/² =. ( 2 -a²)³/²
ɦεɳcε ρɾσѵε∂
Similar questions