Math, asked by Rajeshwari8025, 6 months ago

If tan5Θ = cot4Θ, Find cos3Θ.​

Answers

Answered by Cynefin
22

 \LARGE{ \underline{\underline{ \sf{\red{Required \: answer:}}}}}

GiveN:

  • tan 5Θ = cot 4Θ

We have to FinD:

  • Value of cos 3Θ ?

Step-wise-Step Explanation:

We have,

➛ tan 5Θ = cot 4Θ

This can be written as,

➛ tan 5Θ = tan (90° - 4Θ)

Then,

➛ 5Θ = 90° - 4Θ

➛ 5Θ + 4Θ = 90°

➛ 9Θ = 90°

➛ Θ = 10°

We need to find: cos 3Θ

Plugging the value of Θ

= cos (3 × 10°)

= cos 30°

= √3 / 2

Hence,

  • The required value of cos 3Θ is 3/2.

Extra Tips:

For questions of complementary angles in trigonometry always have a idea about the relationship between the trigonometric ratios. Like:

  • sin (90°- A) = cos A ;
  • cos (90°- A) = sin A

  • tan (90°- A) = cot A;
  • cot (90°- A) = tan A

  • sec (90°- A) = csc A;
  • cosec (90°- A) = sec A

ItzArchimedes: superb
Cynefin: Thank uh :D
Glorious31: Perfect !
MisterIncredible: Brilliant as always ◉‿◉
MяƖиνιѕιвʟє: Nice
Cynefin: Thank uh :)
RvChaudharY50: Perfect .
Anonymous: Splendid!
Cynefin: Thank uh :)
pulakmath007: Brilliant
Answered by Anonymous
118

\underline{\underline{\sf{\clubsuit \:\:Question}}}

  • If tan5θ  = cot4θ , Find cos3θ

\underline{\underline{\sf{\clubsuit \:\:Given}}}

  • tan5θ  = cot4θ

\underline{\underline{\sf{\clubsuit \:\:To\:\:Find}}}

  • cos3θ

\underline{\underline{\sf{\clubsuit \:\:Answer}}}

  • cos3θ = √3 / 2

\underline{\underline{\sf{\clubsuit \:\:Calculations}}}

  • We know cot4θ = tan (90° - 4θ)

But How ?

cot4θ = tan (90° - 4θ)

Manipulating right side

tan (90° - 4θ)

Solve tan (90° - 4θ)

\sf{\text { Use the basic trigonometric identity: } \tan (x)=\dfrac{\sin (x)}{\cos (x)}}

\sf{=\dfrac{\sin \left(90^{\circ \:}-4\theta\right)}{\cos \left(90^{\circ \:}-4\theta\right)}}

Use the Angle Difference identity: sin(s - t) = sin(s)cos(t) - cos(s)sin(t)

\sf{=\dfrac{\sin \left(90^{\circ \:}\right)\cos \left(4\theta\right)-\cos \left(90^{\circ \:}\right)\sin \left(4\theta\right)}{\cos \left(90^{\circ \:}-4\theta\right)}}

Use the Angle Difference identity: cos(s - t) = cos(s)cos(t) + sin(s)sin(t)

\sf{=\dfrac{\sin \left(90^{\circ \:}\right)\cos \left(4\theta\right)-\cos \left(90^{\circ \:}\right)\sin \left(4\theta\right)}{\cos \left(90^{\circ \:}\right)\cos \left(4\theta\right)+\sin \left(90^{\circ \:}\right)\sin \left(4\theta\right)}}

\sf{=\dfrac{\cos \left(4\theta\right)}{\cos \left(90^{\circ \:}\right)\cos \left(4\theta\right)+\sin \left(90^{\circ \:}\right)\sin \left(4\theta\right)}}

\sf{=\dfrac{\cos \left(4\theta\right)}{\sin \left(4\theta\right)}}

\sf{\mathrm{Use\:the\:following\:identity:}\:\dfrac{\cos \left(x\right)}{\sin \left(x\right)}=\cot \left(x\right)}

\sf{=\cot \left(4\theta\right)}

Hence cot4θ = tan (90° - 4θ)

We have :

tan5θ  = cot4θ

⇒ tan5θ  = tan (90° - 4θ)

Take off tan :

⇒ 5θ  = 90° - 4θ

Add 4θ on both sides :

⇒ 5θ + 4θ  = 90° - 4θ + 4θ

⇒ 5θ + 4θ  = 90°

⇒ 9θ  = 90°

Divide both sides by 9 :

⇒ 9θ/9  = 90°/9

⇒ θ = 10°

Now, Find the value of cos3θ

Substitute the value of θ :

cos3θ

= cos (3 × 10°)

= cos 30°

= √3 / 2

∴ cos3θ = √3 / 2


DrNykterstein: Awesome!
prince5132: Nice !
Cynefin: Nice!
Glorious31: Good !
ItzArchimedes: Great
MisterIncredible: Nice
MяƖиνιѕιвʟє: Fabulous !
RvChaudharY50: In place of using tanA = cosA / sinA , you can use tan(A + B) = tanA + tanB / (1 - tanA*tanB) . Answer is perfect but approach was lengthy . Remember in competitive exam we have to save time .
Anonymous: Amazing!
amitkumar44481: Good :-)
Similar questions