If tan5Θ = cot4Θ, Find cos3Θ.
Answers
GiveN:
- tan 5Θ = cot 4Θ
We have to FinD:
- Value of cos 3Θ ?
Step-wise-Step Explanation:
We have,
➛ tan 5Θ = cot 4Θ
This can be written as,
➛ tan 5Θ = tan (90° - 4Θ)
Then,
➛ 5Θ = 90° - 4Θ
➛ 5Θ + 4Θ = 90°
➛ 9Θ = 90°
➛ Θ = 10°
We need to find: cos 3Θ
Plugging the value of Θ
= cos (3 × 10°)
= cos 30°
= √3 / 2
Hence,
- The required value of cos 3Θ is √3/2.
Extra Tips:
For questions of complementary angles in trigonometry always have a idea about the relationship between the trigonometric ratios. Like:
- sin (90°- A) = cos A ;
- cos (90°- A) = sin A
- tan (90°- A) = cot A;
- cot (90°- A) = tan A
- sec (90°- A) = csc A;
- cosec (90°- A) = sec A
- If tan5θ = cot4θ , Find cos3θ
- tan5θ = cot4θ
- cos3θ
- cos3θ = √3 / 2
- We know cot4θ = tan (90° - 4θ)
But How ?
cot4θ = tan (90° - 4θ)
Manipulating right side
tan (90° - 4θ)
Solve tan (90° - 4θ)
Use the Angle Difference identity: sin(s - t) = sin(s)cos(t) - cos(s)sin(t)
Use the Angle Difference identity: cos(s - t) = cos(s)cos(t) + sin(s)sin(t)
Hence cot4θ = tan (90° - 4θ)
We have :
tan5θ = cot4θ
⇒ tan5θ = tan (90° - 4θ)
Take off tan :
⇒ 5θ = 90° - 4θ
Add 4θ on both sides :
⇒ 5θ + 4θ = 90° - 4θ + 4θ
⇒ 5θ + 4θ = 90°
⇒ 9θ = 90°
Divide both sides by 9 :
⇒ 9θ/9 = 90°/9
⇒ θ = 10°
Now, Find the value of cos3θ
Substitute the value of θ :
cos3θ
= cos (3 × 10°)
= cos 30°
= √3 / 2