Math, asked by malayabhue42, 5 months ago

if tanA=1/2,then find the value of tan2A​

Answers

Answered by Asterinn
13

We know that :-

\rm \boxed { \rm sin \: 2 \theta =  \frac{2tan\theta}{1 +  {tan}^{2} \theta}}

\rm \boxed { \rm Cos \: 2 \theta =  \frac{1 -  {tan}^{2} \theta}{1 +  {tan}^{2} \theta}}

We also know that :-

 \rm \: tan \theta \:  =  \dfrac{sin \theta}{cos\theta}

So ,

\rm \: tan 2\theta \:  =  \dfrac{sin 2\theta}{cos2\theta}

\rm  \implies tan 2\theta \:  =  \dfrac{\frac{2tan\theta}{1 +  {tan}^{2} \theta}}{\frac{1  -   {tan}^{2}\theta}{1 +  {tan}^{2} \theta}} = {\dfrac{2tan\theta}{1  -   {tan}^{2} \theta}}

Therefore , now :-

\rm  \implies tan 2A \:   = {\dfrac{2tanA}{1  -   {tan}^{2} A}}

Now put tan A = 1/2 ( given in the question)

\rm  \implies tan 2A \:   = {\dfrac{2 \times  \frac{1}{2} }{1  -   { (\frac{1}{2} )}^{2} }}

\rm  \implies tan 2A \:   = {\dfrac{1 }{1  -   { (\frac{1}{4} )} }}

\rm  \implies tan 2A \:   = {\dfrac{1 }{{ (\frac{4 - 1}{4} )} }} =  \dfrac{1}{ \frac{3}{4} }

\rm \implies tan 2A \:=  \dfrac{4}{3}

Answer :

  • tan 2A = 4/3

Similar questions