Math, asked by malayabhue42, 6 months ago

if tanA=1/3,then find the value of cos2A and sin2A​

Answers

Answered by heavenly07
3

Answer:

cos2A = 4/5 and sin2A = 3/5

Step-by-step explanation:

we know that

cos2A = 1-tan²A/1+tan²A

=> 1- (1/3)²/1+(1/3)²

=> 1-1/9 / 1+1/9

=> 8/9 / 10/9

=> 4/5

and also ,

sin2A = 2tan²A/1+tan²A

=> 2×(1/3) / 1+ (1/3)²

=> (2/3) / 1 +(1/9)

=> 2/3 / 10/9

=> 3/5

HOPE THIS HELPS YOU

ASK IF YOU HAVE ANY DOUBT

Answered by Asterinn
9

Given :

  • tanA=1/3

To find :

  • Cos2A
  • Sin2A

Solution :

We know that :-

 \rm \boxed { \rm sin \: 2 \theta =  \frac{2tan\theta}{1 +  {tan}^{2} \theta}  }

Therefore , the value of Sin2A :-

 { \rm  \implies sin \: 2A =  \dfrac{2tanA}{1 +  {tan}^{2}A }  }

It is given that :- tanA=1/3

{ \rm  \implies sin \: 2A =  \dfrac{2 \times  \frac{1}{3} }{1 +  {( \frac{1}{3}) }^{2}}  }

{ \rm  \implies sin \: 2A =  \dfrac{  \frac{2}{3} }{1 +  {( \frac{1}{9}) }}  }

{ \rm  \implies sin \: 2A =  \dfrac{  \dfrac{2}{3} }{{ \dfrac{9 + 1}{9} }}  }

{ \rm  \implies sin \: 2A =  \dfrac{  \frac{2}{3} }{{ \frac{10}{9} }}  }

{ \rm  \implies sin \: 2A =   \dfrac{2}{3} } \times {{ \dfrac{9}{10} }}

{ \rm  \implies sin \: 2A =   \dfrac{1}{1} } \times {{ \dfrac{3}{5} }}

\rm  \implies sin \: 2A =  \dfrac{3}{5}

Therefore , value of Sin 2A = 3/5

Now we will find out the value of Cos2A.

We know that :-

\rm \boxed { \rm cos \: 2 \theta =  \frac{1  - {tan}^{2} \theta}{1 +  {tan}^{2} \theta}  }

{ \rm  \implies cos \: 2A =  \dfrac{1  -   {tan}^{2}A}{1 +  {tan}^{2}A }  }

It is given that :- tanA=1/3

tan²A =( 1/3)² = 1/9

{ \rm  \implies cos \: 2A =  \dfrac{1  -    \frac{1}{9} }{1 +   \frac{1}{9} }  }

{ \rm  \implies cos \: 2A =  \dfrac{   \frac{9 - 1}{9} }{  \frac{9 + 1}{9} }  }

 \rm  \implies cos \: 2A =   \dfrac{8}{10}  = \dfrac{4}{5}

Therefore , value of Cos 2A = 4/5

Answer :

  • Sin 2A = 3/5
  • Cos 2A = 4/5
Similar questions