if tanA=1-tanB/1+tanB, value of (A+B)
Answers
Answered by
1
Answer:
A + B = 45°
Step-by-step explanation:
Given-----> tanA = ( 1 - tanB ) / ( 1 + tanB )
To find ------> Value of ( A + B )
Solution------> ATQ,
=> tanA = ( 1 - tanB ) / ( 1 + tanB )
=> tanA ( 1 + tanB ) = ( 1 - tanB )
=> tanA + tanA tanB = 1 - tanB
=> tanA + tanB = 1 - tanA tanB
=> tanA + tanB = ( 1 - tanA tanB ) × 1
=> ( tanA + tanB ) / ( 1 - tanA tanB ) = 1
We know that ,
tan ( α + β ) = ( tanα + tanβ ) / ( 1 - tanα tanβ ) , applying it here , we get,
=> tan ( A + B ) = 1
We know that , tan45° = 1 , applying it here , we get,
=> tan ( A + B ) = tan45°
=> A + B = 45°
Similar questions