Math, asked by balveerkumar677, 5 months ago

if tanA=12/13 find the value of 2sinAcosA/sinA²-cos²A​

Answers

Answered by Anonymous
1

Solution:-

Given:-

 \rm \implies \:  \tan A \: =   \dfrac{12}{13}

To find:-

  \implies \rm\dfrac{2 \sin A \cos A}{ \sin {}^{2} A -  \cos^{2}  A}

Now we know

\rm \implies \:  \tan A \: =   \dfrac{12}{13}  =  \dfrac{p}{b}

Now using pythagoras theorem

 \rm \:  \implies \:  {h}^{2}  =  {b}^{2}   +  {p}^{2}

We have

 \rm \: p = 12,b = 13 \: and \: h  = x

Now

 \rm \implies {x}^{2}  = (13 ){}^{2}  + (12) ^{2}

 \rm \implies \:  {x}^{2}  = 169 + 144

 \rm \implies {x}^{2}  = 313

 \rm \implies \: x  = \sqrt{313}

So

 \rm  \implies\: h =  \sqrt{313}

we get

 \rm \to \:  \sin \: A =  \dfrac{p}{h}  =  \dfrac{12}{ \sqrt{313} }

 \rm \to \cos A =  \dfrac{b}{h}  =  \dfrac{13}{ \sqrt{313} }

Put the value on

\implies \rm\dfrac{2 \sin A \cos A}{ \sin {}^{2} A -  \cos^{2}  A}

 \rm \implies \dfrac{2 \times  \dfrac{12}{ \sqrt{313} }  \times  \dfrac{13}{ \sqrt{313} } }{ \bigg( \dfrac{12}{ \sqrt{313} } \bigg)^{2}   -   \bigg(\dfrac{13}{ \sqrt{313} }  \bigg)^{2} }

 \rm \implies \dfrac{ \dfrac{312}{313} }{ \dfrac{144}{313} -  \dfrac{169}{313}  }

 \rm \implies \dfrac{ \dfrac{312}{313} }{ \dfrac{ - 25}{313} }

 \rm \implies \dfrac{312}{313}  \times   \dfrac{ - 313}{25}

 \rm \implies \dfrac{312}{ \cancel{313}}  \times   \dfrac{ \cancel{ - 313}}{25}

Answer

 \rm \implies \:  -  \dfrac{312}{25}

Similar questions