Math, asked by bhabivishal, 5 months ago

if tanA/2=0.6 find tanA​

Answers

Answered by mahek77777
32

For all values of the angle A we know that, tan A = 2 tan A/2/1 - tan^2 A/2

⇒ 2 tan A/2 = tan A ∙ tan^2 A/2

⇒ tan A ∙ tan^2 A/2 + 2 tan A/2 - tan A = 0

⇒ tan θ/2 = -2 ± √(4 + 4 tan^2 A)/2 tan A

⇒ tan θ/2 = -1 ± √1 + tan^2A/tan A

Answered by brokendreams
3

Step-by-step explanation:

Given: \frac{TanA}{2} = 0.6

To find: TanA

For calculation of TanA:

We know that for all values of ∠A, Tan A= \frac{2TanA}{2} - Tan^{2}\frac{A}{2}

\frac{2TanA}{2}= TanA · \frac{Tan^{2}A}{2}

Tan A · \frac{Tan^{2}A}{2} + \frac{2TanA}{A} - Tan A=0

Tan\frac{0}{2} = -2 ± \sqrt{}(\frac{4+4Tan^{2}A)}{2TanA}

Tan\frac{0}{2} = -1 ± \sqrt{1}+\frac{Tan^{2}2A}{TanA}

It is not possible to find the exact quadrant in which \frac{A}{2} because the value of TanA can have an infinite number of values.

Similar questions