IF TanA= 2ab / a^ 2 -b^ 2 find the value of SinA.
Answers
Given
⇒TanA = 2ab/(a² - b²)
To find the value of SinA
We know that
⇒TanA = 2ab/(a² - b²) = Perpendicular/Base
we get
⇒Perpendicular(p) = 2ab , base(b) = (a² - b²) and Hypotenuse (h) = x
Using Pythagoras theorem
⇒h² = p² + b²
⇒h² = (2ab)² + (a² - b²)²
⇒h² = 4a²b² + a⁴ + b⁴ - 2a²b²
⇒h² = a⁴ + b⁴ + 2a²b²
⇒h = √(a⁴ + b⁴ + 2a²b²)
we get
⇒Perpendicular(p) = 2ab , base(b) = (a² - b²) and Hypotenuse(h) = √(a⁴ + b⁴ + 2a²b²)
We Know that
⇒SinA = Perpendicular(p)/Hypotenuse(h)
Put the value
⇒SinA = 2ab/{√(a⁴ + b⁴ + 2a²b²)}
Answer
⇒SinA = 2ab/{√(a⁴ + b⁴ + 2a²b²)}
Step-by-step explanation:
Given
⇒TanA = 2ab/(a² - b²)
To find the value of SinA
We know that
⇒TanA = 2ab/(a² - b²) = Perpendicular/Base
we get
⇒Perpendicular(p) = 2ab , base(b) = (a² - b²) and Hypotenuse (h) = x
Using Pythagoras theorem
⇒h² = p² + b²
⇒h² = (2ab)² + (a² - b²)²
⇒h² = 4a²b² + a⁴ + b⁴ - 2a²b²
⇒h² = a⁴ + b⁴ + 2a²b²
⇒h = √(a⁴ + b⁴ + 2a²b²)
we get
⇒Perpendicular(p) = 2ab , base(b) = (a² - b²) and Hypotenuse(h) = √(a⁴ + b⁴ + 2a²b²)
We Know that
⇒SinA = Perpendicular(p)/Hypotenuse(h)
Put the value
⇒SinA = 2ab/{√(a⁴ + b⁴ + 2a²b²)}
Answer
⇒SinA = 2ab/{√(a⁴ + b⁴ + 2a²b²)}