If tanA=√3 -1/√3 +1 prove that cosA= √3 +1/ 2√2
Answers
Answered by
0
Answer:
tanA=
2
−1, prove that
1+tan
2
A
tanA
=
4
2
ANSWER
tanA=
2
−1
tanA=
AB
BC
=
1
2−1
AC
2
=BA
2
+BC
2
=1
2
+(
2
−1)
2
=1+2−2
2
+1
AC=
4−2
2
sinA=
AC
BC
=
4−2
2
2
−1
cosA=
AC
AB
=
4−2
2
1
sinA×cosA=
4−2
2
2
−1
×
4−2
2
1
=
4−2
2
2
−1
=
2
2
(
2
−1)
2
−1
=
2
2
1
×
2
2
=
4
2
cosA×
cosA
sinA×cosA
=
4
2
Multiply numerator & denominator by cosA
sec
2
A
tanA
=
4
2
⇒
1+tan
2
A
tanA
=
4
2
Answered by
1
.........IT MAY HELP YOU..........
Attachments:
Similar questions