Math, asked by sarthakgupta2004, 11 months ago

if tanA=3/4 and A is not in the first quadrant then {sin(π/2+A) - cot(π-A)} / tan(3π/2-A) - cos(3π/2+A)​

Answers

Answered by tanujmail2me
0

Answer:

Given

π

<

x

<

3

π

2

and

tan

x

=

3

4

π

<

x

<

3

π

2

π

2

<

x

2

<

3

π

4

x

2

2nd quadrant

This means

sin

(

x

2

)

+

v

e

cos

(

x

2

)

v

e

tan

(

x

2

)

v

e

Now

tan

x

=

3

4

2

tan

(

x

2

)

1

tan

2

(

x

2

)

=

3

4

8

tan

(

x

2

)

=

3

3

tan

2

(

x

2

)

3

tan

2

(

x

2

)

+

8

tan

(

x

2

)

3

=

0

3

tan

2

(

x

2

)

+

9

tan(x2)−tan(x2)−3=0

3tan(x2)(tan(x2)+3)−1(tan(x2)+3)=0

⇒(3tan

(x2)−1)(tan(x2)

+3)=0

This means

tan

(x2)

=13

not acceptable as

tan(x2)

→−ve

So

tan(x2)

→−3

Now

cos(x2)

=1sec(x2)

=−1√1+tan2(x2)

=−1√1+(−3)2

=−1√10

Again

sin(x2)

=tan(x2)×cos(x2)

=−3×(−1√10)

=3√10

Similar questions