Math, asked by vandanakri2498, 10 months ago

If tanA = 3/4.find the value of cosec A and sec A​

Answers

Answered by ihrishi
2

Step-by-step explanation:

 \because \:  {sec}^{2} A = 1 + {tan}^{2} A  \\  \therefore \:  {sec}^{2} A = 1 + ( \frac{3}{4} )^{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 1 + \frac{9}{16} \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \frac{16 + 9}{16} \\ \therefore \:  {sec}^{2} A = \frac{25}{16} \\ \huge \purple {\boxed{\therefore \:  {sec} A = \frac{5}{4}}} \\  \implies \: {cos} A = \frac{4}{5}  \\ {sin } A ={cos} A\times {tan} A\\\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:=\frac{4}{5}\times \frac{3}{4}</p><p>\\\therefore {sin } A =\frac{3}{5}\\</p><p>\huge \purple {\boxed{ \therefore \: {cosec} A = \frac{5}{3}} }

Similar questions