Math, asked by laughingpill1, 1 month ago

if tanA= 3/4 find the value of cotA , secA, cosecA​

Answers

Answered by Tushar336
0

Answer:

Since,tanA will be +ve only in 1st $3rd quadrant, Hence possible value of CosecA=+5/3 or - 5/3 and secA=+5/4 or -5/4 , because in 3rd quadrant cosec and sec are negative..

mark as brainliest please

Answered by XxMrZombiexX
57

 \maltese \textbf{ \:  \: if tanA= }{\dfrac{3}{4}  \:  \: \textbf{find the value of cotA , secA, cosecA}}

 \qquad \qquad \qquad  \huge{{ \frak{Solution}}}

\textbf {given \: that}\:   \:  \tt:  \: tan  A \:  \dfrac{3}{4}  \\  \\  \\    \sf: \longmapsto \frac{ \textsf{Side opposite to angle A}}{   \textsf{Side odjucent to angleA}} =  \frac{3}{4}  \\  \\  \sf: \longmapsto \frac{BC }{AB } =  \frac{3}{4}   \\ \\  \bf \: let \:   \:  \: \frac{BC}{ AB } =  \frac{3x}{4x }  \\  \\  \\   \maltese \underline{ \textbf{We need to Find AC so we use Pythagoras theorem}} \\  \\  \textbf{In right triangle ABC} \\  \\  \green{ \bf using \:phythagoras  \: theorem } \\  \\  \sf: \dashrightarrow \underline{ \pink{ \boxed{ \pmb{(Hypotenuse)² = (Height)²+(Base)²}}}} \\  \\  \sf: \dashrightarrow(AC)² =(BC)²+(AB)² \\  \\ \sf: \dashrightarrow(AC)² =  {(3x)}^{2}  +  {(4x)}^{2}  \\  \\ \sf: \dashrightarrow(AC)² = 9x + 16x \\  \\ \sf: \dashrightarrow(AC)² = 25x ^{2}  \\  \\ \sf \: now \: taking \: the \: square \: root \: to \: both \: side \:  \\  \\  \sf: \dashrightarrow(AC) =  \sqrt{25 {x}^{2} }  \\  \\ \sf: \dashrightarrow \underline{ \boxed{ \sf(AC) = 5x}} \bigstar \\  \\  \\  \large \bf \: now \:  \\  \\  \\ \underline{  \boxed{ \bf \: sin A = \dfrac{ side \:  opposite \:  to  \: angel \:  A }{Hypotenuse }}} \\  \\  \sf: \dashrightarrow \: sin A  =  \dfrac{BC}{AC} \\  \\ \sf: \dashrightarrow \: sin A =  \frac{3x}{5x}  \: \\  \\ \sf: \dashrightarrow \: sin A =  \frac{3}{5} \\  \\ \\  \large \bf \: similarly \\  \\  \\   \underline{ \boxed{  \bf \: cosA =  \dfrac{side \:  adjacent \:  to \:  A }{Hypotebuse}}} \\  \\  \sf: \dashrightarrow \: cosA  = \dfrac {AB}{AC} \\  \\   \sf: \dashrightarrow \: cosA =  \frac{3x}{5x}  \\  \\   \sf: \dashrightarrow \: cosA =  \frac{3}{5}  \\  \\  \\  \\

 \\   \large \bf \: given  =tan A  =  \frac{3}{4} \\  \\   \\

 \qquad \qquad \maltese \underline{ \boxed{ \bf \: cosec A  =  \dfrac{1}{sinA} }} \\  \\ \sf \:  cosec A  =  \frac{1}{4/5}  =  \frac{4}{5}  \\  \\  \\

 \qquad \qquad \maltese \underline{ \boxed{ \bf \: sec A  =  \dfrac{1}{cosA} }} \\  \\ \sf \:  sec A  =  \frac{1}{3/5}  =  \frac{5}{3}  \\  \\  \\

 \qquad \qquad \maltese \underline{ \boxed{ \bf \: cotA  =  \dfrac{1}{tanA} }} \\  \\ \sf \:  cot A  =  \frac{1}{3/4}  =  \frac{4}{3}  \\  \\  \\

 \rule{80mm}{0.2mm}

 \\  \\  \underline{ \boxed{ \textbf{The value of} \sf  \:  \: cotA =  \frac{4}{3}  , secA =  \frac{5}{3} , cosecA =  \frac{5}{4} }}

Similar questions