Math, asked by sarugautam1, 9 months ago

if TanA=3/4, find the value of Sin3A​

Answers

Answered by harshvalaki
2

Answer:

 \frac{117}{125}

Step-by-step explanation:

 \tan( \alpha )  =  \frac{3}{4}

Using the 3,4,5 triangle, we get:

 \sin( \alpha )  =  \frac{3}{5}

There is a formula for sin(3x):

 \sin(3 \alpha )  = 3 \sin( \alpha )  - 4 sin^{3} ( \alpha )

 \sin(3 \alpha )  =  \frac{9}{5}  -  \frac{108}{125}

 \sin(3 \alpha )  =  \frac{225 - 108}{125}

 \frac{117}{125}

Answered by muhassinshaik
1

Answer:117/125

Step-by-step explanation: TanA is 3/4 so by Pythagoras theorem hypotenuse is 5. so SinA=3/5 and cosA=4/5

Sin3A=sin(2A+A)=sin2A.CosA+Cos2A.SinA

Sin2A=2sinA.Cos2A=24/25

Cos2A=cos^2 A-sin^2 A=7/25

Now sin3A= 24/25.4/5+7/25.3/5=117/125

Similar questions