Math, asked by muskandewangan416, 10 months ago

if tanA=4/3show that under root 1+cosAby 1-cosA=2​

Answers

Answered by kailashmeena123rm
54

Answer:

Question

if tanA=4/3show that under root 1+cosAby 1-cosA=2

Solution

tan (a) = 4

3

where 4 = perpendicular = p

and 3 = base = b

we have to find hypotenuse (H) first

H^2 = P^2 + B^2

H = √( 16 + 9 )

H = 5

now

cos A = Base

H

= 3/5

now

root 1+cosAby 1-cosA= root 1-3/ 5 divide 1+3/5

we get √ 4

we get 2

hence proved

MARK ME AS BRAINLIEST

Answered by ItzShinyQueen13
1

Step-by-step explanation:

We are given,

▪tanA = \frac {4}{3}

We have to show,

\frac{ {\sqrt1+cosA}}{1-cosA}

▪ Oposite side = 4

▪ Adjacent side = 3

∴ Hypotenuse = \sqrt{{4}^{2}+{3}^{2}}

= \sqrt {16+9}

= \sqrt{25}

= 5

∴cosA =  \frac{3}{5}  \\  \\ L.H.S =  \frac{ \sqrt{1}  + cosA}{1 - cosA}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{ {1 +  \frac{3}{5} } }{1 -  \frac{3}{5} }  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =   \frac{ { \frac{5 + 3}{5} } }{ \frac{5 - 3}{5} }  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{ { \frac{8}{5} } }{ \frac{2}{5} }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{8}{5}  \times  \frac{5}{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 4

Similar questions