if tanA=4 then find sinA cosA
Answers
Answered by
1
Answer:
HELLO EVERYONE
YOUR ANSWER IS GIVEN BELOW :
given : tanA = 4
find : sinAcosA =?
now, we use identity -
1+tan²A=sec²A
1+(4) ²=sec²A
1+16=sec²A
17=sec²A
secA=√17
cosA=1/√17
now,
sin²A+cos²A=1
sin²A=1-cos²A
sin²A=1-(1/√17) ²
sin²A=1-1/17
sin²A=16/17
sinA=4/√17
sinA.cosA=4/√17 . 1/√17
sinA.cosA=4/17.
THANK YOU☺.
I HOPE IT'S HELPFUL FOR YOU.
Answered by
1
tanA = 4 as given
We'll find sinAcosA
We know that tanθ = p/b
∴p/b = 4/1
Using Pythagoras Theorem,
h² = b² + p²
h² = 1 + 16
h = √17
sinA = p/h
sinA = 4/√17
cosA = b/h
cosA = 1/√17
∴sinAcosA = (4)/(√17) × (1)/(√17)
. = 4/17
Similar questions
Math,
7 days ago
Business Studies,
15 days ago
Biology,
15 days ago
Chemistry,
8 months ago
Math,
8 months ago