Math, asked by dipalibhadane2611, 4 months ago

if tanA = 40/9 , then find secA and sinA by using identity


plz solve it​

Answers

Answered by SuitableBoy
41

{\huge{\rm{\underline{\underline{Question:-}}}}}

Q) If tanA = 40/9 then find the value of secA and sinA using identities .

 \\

{\huge{\underline{\underline{\rm{Answer\checkmark}}}}}

 \\

Given :

  • tanA = \dfrac{40}{9}

 \\

To Find :

  • sec A = ?
  • sin A = ?

 \\

Solution :

Using the Formula -

 \boxed{ \sf{ {tan}^{2}  \: \theta + 1 =  {sec}^{2} \: \theta }}

Put the value of tan a .

 \mapsto \rm \: { \{ \frac{40}{9 } } \}^{2}   + 1 =  {sec}^{2}  \: a \\

 \mapsto \rm \:  \frac{4 0 \times 40}{9 \times 9}  + 1 =  {sec}^{2}  \: a \\

 \mapsto \rm \:  \frac{1600}{81}  + 1 =  {sec}^{2}  \: a \\

 \mapsto \rm \:  \frac{1600 + 81}{81}  =  {sec}^{2}  \: a \\

 \mapsto \rm \:  \frac{1681}{81}  =  {sec}^{2}  \: a \\

 \mapsto \rm \: sec \: a =  \sqrt{ \frac{1681}{81} }  \\

 \rightarrow \underline{ \boxed{ \frak{ \pink{sec \: a }}=   \frac{41}{9} }}

We know ,

 \mapsto \rm \: cos \: a =  \frac{1}{sec \: a}  \\

 \mapsto \rm \: cos \: a =  \frac{1}{ \frac{41}{9} }  \\

 \mapsto \boxed{ \sf{cos \: a =  \frac{9}{41} } }

Now ,

Using the Formula

 \boxed{ \sf{ {sin}^{2}  \:  \theta +  {cos}^{2}  \:  \theta = 1}}

put the value of cos

  \mapsto \rm \:  {sin}^{2}  \: a +  {( \frac{9}{41}) }^{2}  = 1 \\

 \mapsto \rm \:  {sin}^{2}  \: a = 1 -  {( \frac{9}{41} )}^{2}  \\

 \mapsto \rm \:  {sin}^{2}  \: a = 1 -  \frac{81}{1681}  \\

 \mapsto \rm \:  {sin}^{2}  \: a =  \frac{1681 - 81}{1681}  \\

 \mapsto \rm \: sin \: a =  \sqrt{ \frac{1600}{1681} }  \\

 \mapsto \underline{ \boxed{ \frak{  \pink{sin \: a }=  \frac{40}{41} }}}

So ,

  • sec A = \dfrac{41}{9}
  • sin A = \dfrac{40}{41}

 \\

_________________________

 \\

Know More :

• sin² x + cos² x = 1

• tan² x + 1 = sec² x

• 1 + cot² x = cosec² x

• sin x = \dfrac{1}{cosec\;x}

• cos x = \dfrac{1}{sec\;x}

• tan x = \dfrac{1}{cot\;x}

Answered by sayhi2rehan
1

Answer:

i hope this helps you in solving

Attachments:
Similar questions