Math, asked by borashubhda, 18 days ago

If tanA =5/6 ,tan B =-1/3 ,then tanC( A+B) = ?

Answers

Answered by Anonymous
8

\huge\underline\mathrm\green{Question:-} \underline\green\Downarrow{ }

\pink\Longrightarrow{ }If tanA =5/6 ,tan B =-1/3

ㅤㅤthen tan(A+B) = ?

\Large\mathrm\red{Given\:☞}

\orange{\star{ }}\mathrm\orange{tan\:A\:=} \large\mathrm\orange{\frac{5}{6}}

\orange{\star{ }}\mathrm\orange{tan\:B\:=} \large\mathrm\orange{\frac{-1}{3}}

\rule{200pt}{3pt}

\mathrm\blue{consider,tan\:(A\:+\:B)\:=} \Large\mathrm\blue{\frac{tan\:+\:tan\:B}{1\:-\:tan\:A\:tan\:B}}

\pink\Rightarrow{ }\mathrm\blue{tan\:(A\:+\:B)\:=} \Large\mathrm\blue{\frac{5/6\:+\:(-1/3)}{1\:-5/6 ×\:(-1/3)}}

\pink\Rightarrow{ }\mathrm\blue{tan\:(A\:+\:B)\:=} \Large\mathrm\blue{\frac{5/6\:-\:1/3}{1\:-(-5/18)}}

\pink\Rightarrow{ }\mathrm\blue{tan\:(A\:+\:B)\:=} \Large\mathrm\blue{\frac{1/2}{1\:+\:5/18}}

\pink\Rightarrow{ }\mathrm\blue{tan\:(A\:+\:B)\:=} \Large\mathrm\blue{\frac{1/2}{23/18}}

\pink\Rightarrow{ }\mathrm\blue{tan\:(A\:+\:B)\:=} \Large\mathrm\blue{\frac{1}{2}} \Large\mathrm\blue{×} \Large\mathrm\blue{\frac{18}{23}}

\pink\Rightarrow{ }\mathrm\blue{tan\:(A\:+\:B)\:=} \Large\mathrm\blue{\frac{9}{23}}

\rule{200pt}{3pt}

\mathrm\blue{Therefore,}\mathrm\blue{tan\:(A\:+\:B)\:=} \Large\mathrm\blue{\frac{9}{23}}

Answered by chandan454380
2

Answer:

the answer is

 \frac{9}{23}

Step-by-step explanation:

if

 \tan(A )  =  \frac{5}{6}  \\  \tan( B)  =  -  \frac{1}{3}

then we know the formula of tan(A+B) as

tan(A+B) =   \frac{tanA+ \tan B}{1 - tanA \tan B}

Now putting on the values we get,

tan(A+B) =   \frac{tanA+ \tan B}{1 - tanA \tan B}  \\  =  \frac{ \frac{5}{6} + ( -  \frac{1}{3})  }{1 -  \frac{5}{6} (  - \frac{1}{3}) }  \\  =  \frac{ \frac{5}{6} -  \frac{1}{3}  }{1  +  \frac{5}{18} }  \\  =  \frac{ \frac{5 - 2}{6} }{ \frac{18 + 5}{18} }  \\  =  \frac{ \frac{3}{6} }{ \frac{23}{18} }  \\  =   \frac{3}{6}  \times  \frac{18}{23}  \\  =  \frac{1}{2}  \times  \frac{18}{23}  \\  =  \frac{9}{23}

Similar questions