If tanA=a/(a+1) and tanB=1/(2a+1) then find the value of A+B.
Answers
Answered by
5
we know tan(A+B) =
( tanA+tanB)/(1-TanAtanB)
now putting values for tanA and tanB
[a/(a+1) +1/(2a+1)]/{1-a/(2a+1)(a+1)}
= (2a^2 +a +a+1)/(2a+1)(a+1) -a
= 2a^2+2a+1/2a^2+a+2a+1-a
=(2a^2 +2a +1) /( 2a^2 +2a+1)
= 1
hence Tan(A+B)= 1
Tan(A+B)= Tan45
A+B =45°
Similar questions