Math, asked by Anonymous, 1 day ago

If tana and tanß be the roots of x ^ 2 - px + q = 0 then find cos 2 * (alpha + beta)​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \tt{ \blue{tan( \alpha )} \:  \:  \: and \:  \:  \:  \blue{ tan( \beta ) } \:  \:  \: are \:  \:  \: the \:  \:  \: roots \:  \:  \: of \:  \:  \:  \green{ {x}^{2} - px + q = 0 }}

So,

 \sf{ \bullet \:  \purple{ Sum \:  \: of \:  \: roots, \: }tan( \alpha ) +  tan( \beta ) = p }

 \sf{ \bullet \:  \purple{ Product \:  \: of \:  \: roots, \: }tan( \alpha )  \cdot tan( \beta ) = q }

Now,

 \sf{tan( \alpha   + \beta ) =  \dfrac{tan( \alpha ) + tan( \beta )  }{1 -  tan( \alpha ) \cdot tan( \beta )  }}

 \sf{ \implies  \: tan( \alpha   + \beta ) =  \dfrac{p }{1 -  q  }}

So,

 \sf{cos \{2( \alpha +   \beta ) \}}

 \sf{ = \dfrac{1 -  tan^{2} ( \alpha  +  \beta ) }{1  +   tan^{2} ( \alpha  +  \beta ) } }

 \sf{ = \dfrac{1 -  \bigg( \dfrac{p}{1 - q} \bigg) ^{2}  }{1  +   \bigg( \dfrac{p}{1 - q} \bigg) ^{2}  } }

 \sf{ = \dfrac{  \dfrac{(1 - q) ^{2} -  p^{2} }{(1 - q)^{2} }   }{ \dfrac{(1 - q) ^{2}  +   p^{2} }{(1 - q)^{2} }} }

 \sf{ = \dfrac{  (1 - q) ^{2} -  p^{2}   }{(1 - q) ^{2}  +   p^{2} } }

 \sf{ = \dfrac{  1  +  q ^{2} - 2q -  p^{2}   }{1  + q ^{2}  - 2q +   p^{2} } }

Similar questions