if tanA = b/a then show that ( a cos 2A + b sin 2A) = a
Answers
Question : -
If tan A = b/a the show that (a cos 2A + b sin 2A) = a
ANSWER
Given : -
tan A = b/a
Required to prove : -
- a cos 2A + b sin 2A = a
Proof : -
tan A = b/a
So, let's consider a right angled ∆ABC, in which angle B = 90°
In ∆ABC, right angled at B
tan A = b/a (given)
But,
tan A = (opposite side)/(adjacent side)
tan A = (BC)/(AB)
So,
BC = bk units & AB = ak units
Applying Pythagoras theorem;
AC² = AB² + BC²
AC² = (ak)² + (bk)²
AC² = a²k² + b²k²
AC² = k²(a²+b²)
AC = √[k²(a²+b²]
AC = √(a²+b²)k units
Now, let's evaluate the value of sin A & cos A
sin A = (opposite side)/(hypotenuse)
sin A = (BC)/(AC)
sin A = (bk)/(√[a²+b²]k)
sin A = (b)/(√[a²+b²])
Similarly,
cos A = (adjacent side)/(hypotenuse)
cos A = (AB)/(AC)
cos A = (ak)/(√[a²+b²]k)
cos A = (a)/(√[a²+b²])
Now, we know that
- sin 2A = 2 sin x cos x
- sin 2A = 2 sin x cos xcos 2A = cos² A - sin² A
Let's find the value of (a cos 2A + b sin 2A)
a cos 2A + b sin 2A
a (cos² A - sin² A) + b (2 sin A cos A)
a [(a)/(√a²+b²)]²-[(b)/(√a²+b²)]² + b ( [2] x [(b)/(√a²+b²)]² x [(a)/(√a²+b²)]² )
a [ (a² - b²)/(a²+b²) ] + b [ (2ab)/(a²+b²) ]
(a³-ab²)/(a²+b²) + (2ab²)/(a²+b²)
(a³-ab²+2ab²)/(a²+b²)
(a³+ab²)/(a²+b²)
(a[a²+b²])/(a²+b²)
= a
= RHS