if tanA=b/a then show that acos2A+bsin2A=a
Answers
Answered by
1
Answer:
Given that tan A = b/a, prove that a cos 2A + b sin 2A = a.
So sin A = b/(a^2+b^2)^0.5 and cos A = a/(a^2+b^2)^0.5
a cos 2A = a[cos^2 A - sin^2 A] = a[a^2-b^2]/(a^2+b^2) …(1)
b sin 2A = b[2sin A cos A] = 2b[ab]/(a^2+b^2) …(2)
a cos 2A + b sin 2A = sum of (1) and (2)
= a[a^2-b^2]/(a^2+b^2) + 2b[ab]/(a^2+b^2)
= [a^3-ab^2+2ab^2]/(a^2+b^2)
= a[a^2+b^2]/(a^2+b^2]
= a. Proved
Similar questions
Social Sciences,
2 months ago
English,
2 months ago
English,
2 months ago
English,
5 months ago
English,
5 months ago
Accountancy,
11 months ago
Math,
11 months ago
India Languages,
11 months ago