Math, asked by NITESHYADAV4653, 1 year ago

If tanA+cotA=2,find sinA

Answers

Answered by TheLifeRacer
19
Hii !!!

tanA + cotA = 2

sinA / cosA + cosA / sinA = 2

sin²A + cos²x / sinA × cosA = 2

1 /sinAcosA = 2

1 = 2sinA cosA

•°• 2sinA cosA = sin2A

hence, sin2A= 1

sin2A = sin90°

2A = 90°

A = 45°

hence, sinA = sin45° = 1/√2

__________________________

Hope it helps you !!!

@Rajukumar111
Answered by Anonymous
14
Bonjour!

Given=> tanA + cotA = 2

 \frac{1}{cos \: a \times sin \: a} = 2

 = > tan \: a + \frac{1}{tan \: a} = 2

 = > \frac{ {tan}^{2}a + 1 }{tan \: a} = 2

 = > \frac{ {sec \: }^{2} a}{tan \: a} = 2

 = > \frac{ \frac{1}{ {cos \: }^{2}a } }{tan \: a} = 2

 = > \frac{1}{ {cos}^{2} a \times \frac{sin \:a }{cos \: a} } = 2

 = > \frac{1}{sin \: a \times cos \: a} = 2 \\ \\ = > \frac{1}{cos \: a} = 2sin \: a \\ \\ = > 2sin \: a = sec \: a \\ \\ = > sin \: a = sec \: a \div 2

As, we know tan45° and cot45° is equal to 1.

So, sin45° = 1/√2

OR

sin45° = sec45°/2

= √2/2

= 1/√2

Hope this helps...:)
Similar questions