Math, asked by Nilay123, 1 year ago

If tanA + cotA = 2. Find tan^n A + cot^n A = ???

Answers

Answered by siddhartharao77
6
Given Equation is tan A + cot A = 2 can be written as

We know that cot theta = 1/tan theta.

                               tan A + 1/tan A = 2

                               tan^2 A + 1 = 2 tan A

                               tan^2 A + 1 - 2 tan A = 0

We know that (a-b)^2 = a^2 + b^2 - 2 * a * b.

                               (tan A - 1)^2 = 0

                                tan A = 1.

                                cot A = 1/tan A = 1/1 = 1


Given tan^n A + cot^n A

         = (tan A)^n + (cot A)^n

We know that 1^a = 1.

         = 1^n + 1^n

         = 1 + 1

         = 2.


Therefore tan^n A + cot^n A = 2.


Hope this helps!

Nilay123: Thank you veryyy muchhh
siddhartharao77: My Pleasure Nilay
siddhartharao77: Thanks Nilay for the brainliest
Answered by sandy1816
2

tanA + cotA= 2 \\ tanA +  \frac{1}{tanA}  = 2 \\  {tan}^{2} A  + 1- 2tanA = 0 \\ ( {tanA- 1})^{2}  = 0 \\ tanA= 1 \\  \\ now \:  \:  {tan}^{n} A +  {cot}^{n} A \\  =  {1}^{n}  +  {1}^{n}  \\  = 1 + 1 = 2

.

Similar questions