if tanA+ cotA = 2 find tan square A + cot square A
Answers
Answered by
6
We are given tanA + cotA = 2
so, (tan + cotA )^2 = (2)^2
tan^2 A + cot^ A + 2(1) = 4 [∵tanA*cotA=1]
so, tan^2 A + cot^2 A = 2
so, (tan + cotA )^2 = (2)^2
tan^2 A + cot^ A + 2(1) = 4 [∵tanA*cotA=1]
so, tan^2 A + cot^2 A = 2
Answered by
4
TanA+cotA=2
tan2A+cot2A+2tanAcotA= 4
tan2A+cot2A +2=4
tan2A+cot2A=2
plzz marka as brainliest
tan2A+cot2A+2tanAcotA= 4
tan2A+cot2A +2=4
tan2A+cot2A=2
plzz marka as brainliest
Similar questions