Math, asked by sonuraj123, 1 year ago

If tanA+cotA=2
Then find the value of tan^5A +cot^5A?

Answers

Answered by SAKSHUUU
6
tanA - cotA)^2 
= (tanA + cotA)^2 - 4tanA cotA 
= 2^2 - 4 
=0 
=> tanA = cot A = 1 
=> tan^5 A + cot^5 A 
= 1 + 1 
= 2.
Answered by pulakmath007
2

If tan A + cot A = 2 then tan⁵ A + cot⁵ A = 2

Given :

\displaystyle \sf{ \tan  A  + \cot  A  = 2}

To find :

\displaystyle \sf{ {\tan}^{5}  A + {\cot}^{5}  A  }

Solution :

Step 1 of 3 :

Write down the given equation

Here it is given that

\displaystyle \sf{ \tan  A  + \cot  A  = 2}

Step 2 of 3 :

Find the value of tan A and cot A

\displaystyle \sf{ \tan  A  + \cot  A  = 2}

\displaystyle \sf{ \implies \: \tan  A + \frac{1}{\tan  A } = 2}

\displaystyle \sf{ \implies \: \frac{{\tan}^{2}  A + 1}{\tan  A } = 2}

\displaystyle \sf{ \implies \: {\tan}^{2}  A  + 1 = 2\tan  A }

 \displaystyle \sf{ \implies \: {\tan}^{2} A  + 1 - 2\tan  A  = 0}

\displaystyle \sf{ \implies \: {(\tan  A  - 1)}^{2} = 0}

\displaystyle \sf{ \implies \: (\tan  A  - 1) = 0}

\displaystyle \sf{ \implies \: \tan  A   =  1}

\displaystyle \sf{ \implies \cot  A   =  1}

Step 3 of 3 :

Find the value of the expression

\displaystyle \sf{ {\tan}^{5}  A + {\cot}^{5}  A  }

 \displaystyle \sf{ = {1}^{5} + {1}^{5} }

 \sf{ =1 + 1}

 = 2

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions