If tana+ cota= 4/ root3 , then find value of sina+ cosa
Answers
Answered by
2
SinA + cosA = √3
Squaring on both sides we get,
(SinA + cosA)² = (√3)²
Sin²A + cos²A +2sinAcosA = 3
1 + 2sinAcosA = 3
2sinAcosA = 3-1
SinAcosA = 2/2
sinAcosA = 1......................(!)
tanA+cotA = 1
sinA/cosA + cosA/sinA = 1
sin²A + cos²A /sinAcosA = 1
1/sinAcosA = 1
sinAcosA = 1.....................(!!)
thus tanA + cotA = 1
follow me please...
Mark as brainliest please...
10 thanks for 20 return thanks...
Answered by
0
Answer:
1/2+root3/2
Step-by-step explanation:
tan+cota=4/root3
sina/cosa+cosa/sina=4/root3
1/sina cosa=4/root3
sin2a=sin60
a=30
sina+cosa = ?
sin30+cos30=1/2+root3/2
I hope this helps u
Similar questions