If tanA-cotA=4 then find the value of (tanA cotA).
Answers
Answered by
0
tanA - cotA = 4
Now, squaring on both sides we have,
(tanA - cotA)² = 4²
tan²A + cot²A - 2tanAcotA = 16
tan²A + cot²A - 2 = 16
tan²A + cot²A = 18
(tanA + cotA)² - 2tanAcotA = 18
(tanA + cotA)² - 2 = 18
(tanA + cotA)² = 20
tanA + cotA = √20
tanA + cotA = 2√5
Hence value of,
tanA + cotA = 2√5
Now, squaring on both sides we have,
(tanA - cotA)² = 4²
tan²A + cot²A - 2tanAcotA = 16
tan²A + cot²A - 2 = 16
tan²A + cot²A = 18
(tanA + cotA)² - 2tanAcotA = 18
(tanA + cotA)² - 2 = 18
(tanA + cotA)² = 20
tanA + cotA = √20
tanA + cotA = 2√5
Hence value of,
tanA + cotA = 2√5
Similar questions