If tanA + cotA =4 then find the value of tanA (the answer should be numerical value)
Answers
Answered by
1
Answer:
tan A = 2 + √3
tan A = 2 - √3
Step-by-step explanation:
tan A + cot A = 4
tan A + 1 / tan A = 4
tan² A + 1 = 4tan A
tan² A - 4tan A + 1 = 0
u = tan A
u² - 4u + 1 = 0
u = (-b ± √b² - 4ac) / 2a
u = (-(-4) ± √(-4)² - 4(1)(1)) / 2(1)
u = (-(-4) ± √(-4)² - 4(1)(1)) / 2(1)
u = (4 ± √16 - 4) / 2
u = (4 ± √12) / 2
u = (4 ± 2√3) / 2
u = 2(2 ±√3) / 2
u = 2 ±√3
tan A = 2 + √3
tan A = 2 - √3
Similar questions