Math, asked by venkatapavani425, 7 months ago

If tanA + cotA =4 then find the value of tanA (the answer should be numerical value)​

Answers

Answered by luisecubero77
1

Answer:

tan A = 2 + √3

tan A = 2 - √3

Step-by-step explanation:

tan A + cot A = 4

tan A + 1 / tan A = 4

tan² A + 1 = 4tan A

tan² A - 4tan A + 1 = 0

u = tan A

u² - 4u + 1 = 0

u = (-b ± √b² - 4ac) / 2a

u = (-(-4) ± √(-4)² - 4(1)(1)) / 2(1)

u = (-(-4) ± √(-4)² - 4(1)(1)) / 2(1)

u = (4 ± √16 - 4) / 2

u = (4 ± √12) / 2

u = (4 ± 2√3) / 2

u = 2(2 ±√3) / 2

u = 2 ±√3

tan A = 2 + √3

tan A = 2 - √3

Similar questions