if TanA+CotA=5, find the value Tan square A+Cot square A
Answers
Answered by
2
Given, tan A+cotA=5,
now,
squaring both sides, we get
(tanA+cotA)^2=(5)^2
tan^2A +cot ^2A +2.tanA.cotA=25
tan^2A+cot^2A +2.(1/cotA).cotA=25.(As,
tanA=1/cotA)
now by canceling cotA, we get
tan^2A +cot^2A +2.1=25
there fore,
tan^2A +cot^2A=25-2.=23....
Sorry for late,
now,
squaring both sides, we get
(tanA+cotA)^2=(5)^2
tan^2A +cot ^2A +2.tanA.cotA=25
tan^2A+cot^2A +2.(1/cotA).cotA=25.(As,
tanA=1/cotA)
now by canceling cotA, we get
tan^2A +cot^2A +2.1=25
there fore,
tan^2A +cot^2A=25-2.=23....
Sorry for late,
Similar questions