if tanA+cotA=5 show that tan^4A+cot^4A=527
Answers
Answered by
0
Answer:-
tanA+cotA=5
Squaring both sides,
(tanA+cotA)^2=25
tan^2 A+cot^2 A+2tanAcotA=25
tan^2 A+cot^2 A+2=25
tan^2 A+cot^2 A=25-2=23
(tan^2 A+cot^2 A)^2=23^2
tan^4 A+cot^4 A+2tan^2A×cot^2A=529
tan^4 A+cot^4 A+2=529
tan^4 A+cot^4 A=529-2=527
Therefore, tan^4 A+cot^4 A=527
Answered by
0
.
Similar questions